Course Syllabus

Natural language and Information Visualization are critical when humans collaborate on solving challenging data-intensive problems and/or in making complex decisions. In this course we will explore how NLP (with a focus on LLMs) and Interactive InfoVis can be synergistically combined to enable effective human-AI collaboration in solving such problems/making such decisions in engineering, science, economics....

In particular, we will focus on four types of synergies between NLP (LLMs) and InfoVis:

  • Text -> InfoVis (aka Text Analytics). When the user goal is to  explore/analyze large textual repositories
  • InfoVis for NLP: When the user goal is either to  Evaluate or Interpret the NLP model)
  • InfoVis(+data) -> text (Chart Captioning and Chat QA)
  • InfoVis & data & text (when both inputs and outputs can be multimodal)

There are no specific NLP/InfoVis pre-reqs for this course, but the more you already know about these fields the better ;-). Also some background in AI and HCI would help. This is a CS grad course! Please talk to me if you are unsure on whether you could successfully take this course carenini@cs.ubc.ca.

The course will be organized as a glorified reading group + a final project. Students will present research papers (or existing tutorials) (number of times depends on how many students will register). On the days a student is not presenting, they will need to write a short critical summary of the readings (typically three per lecture - 3h once a week) + a few questions on such readings.. 

In the first lecture, I will propose a tentative reading list but students will be allowed to propose additional complementary/supplementary readings. 

A key component of the course is the final project, where you will apply what you have learned to make a (minimal/partial/potential) research contribution to an NLP+InfoVis problem you care about related to the themes of the course.

TENTATIVE COURSE  SCHEDULE (classes on Wednesday 9-12 in MCLD-Floor 2-Room 2014)

Class Reading Presenter Notes/Supplemental Materials
Sept 4

Course Intro

[ppt] [pdf]

Carenini G.  
 Sept 11

Intro - NLP:  From Language Modeling to LLMs

(you are not required to attend if you already have a strong background in NLP)

FINAL SLIDES ppt pdf

Carenini G. 
Speech and Language Processing by D. Jurafsky, J. H. Martin.(J&M).  3rd Edition released Aug 2024
 
Sept 18

Intro: InfoVis

 

Smith R.  Visualization Analysis & Design (half day (3 hrs) version, 143 slides) halfdaycourse20: IEEE VIS 2020 Tutorial, Utah/virtual, 10/20Slides: pdfpdf 16upkeyppt
Videos: InfoVis@UBC YouTube playlist w/ 9 separable snippets, IEEE VIS YouTube video including Q&A and VIS paper previews during breaks (3.5 hrs) 

Sept 25 


INTERPRETABILITY

INFOVIS-FOR-NLP

(a)  Benjamin Hoover, Hendrik Strobelt, Sebastian Gehrmann, , exBERT: A Visual Analysis Tool to Explore Learned Representations in Transformers" (paper) Models” ACL Demo, 2020 [video]

Sangyun Kwon

[slides]

Foundation models meet visualizations: Challenges and opportunities | Computational Visual Media (springer.com)

(Focus on Sections 1, 2.1, 3 for this class)

(b) Yeh, C.; Chen, Y.; Wu, A.; Chen, C.; Vi´egas, Z.; Wattenberg, M. AttentionViz: A global view
of transformer attention. (paper) (video)IEEE Transactions on Visualization and Computer Graphics Vol. 30, No.
1, 262–272, 2024.

Yuwei Yin

[slides]

(c) Wang, X.; Huang, R.; Jin, Z.; Fang, T.; Qu, H. CommonsenseVIS: Visualizing and understanding
commonsense reasoning capabilities of natural
language models. (paper) [video ]  IEEE Transactions on Visualization
and Computer Graphics Vol. 30, No. 1, 273–283, 2024.

Xiang Zhang

[slides]




Oct 2

INTERPRETABILITY

INFOVIS-FOR-NLP

(a) Strobelt, H.; Webson, A.; Sanh, V.; Hoover, B.; Beyer, J.; Pfister, H.; Rush, A. M. Interactive and visual prompt engineering for ad-hoc task adaptation with large language models. IEEE Transactions on Visualization and Computer Graphics Vol. 29, No. 1,  https://arxiv.org/abs/2208.07852

[video]

Peyton Rapo

[slides

 

(b) Cheng et al., 2023, RELIC: Investigating Large Language Models Responses using Self-Consistency
 https://arxiv.org/abs/2311.16842 

Amirhossein Abaskohi 

[slides]

 

START CAPTIONING

(c) [HTML]  Accessible Visualization via Natural Language Descriptions: A Four-Level Model of Semantic Content | MIT Visualization Group

{PDF] Accessible Visualization via Natural Language Descriptions: A Four-Level Model of Semantic Content | IEEE Journals & Magazine | IEEE Xplore

 IEEE Transactions on Visualization and Computer Graphics ( Volume: 28, Issue: 1, January 2022)

 Ritik Vatsal

[slides]

Oct 9


CAPTIONING

InfoVis+>Text

 

(a) Shankar Kantharaj, Rixie Tiffany Leong, Xiang Lin, Ahmed Masry, Megh Thakkar, Enamul Hoque, Shafiq Joty

Chart-to-Text: A Large-Scale Benchmark for Chart Summarization.

.   

Amirhossein Dabiriaghdam [slides]
 

 From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models.

https://github.com/khuangaf/Awesome-Chart-Understanding?tab=readme-ov-file#chart-captioning-summarization 

(b) Benny Tang, Angie Boggust, Arvind Satyanarayan

VisText: A Benchmark for Semantically Rich Chart Captioning.

.   

Brian Diep 

[slides]

 

(c) Lei Li, Yuqi Wang, Runxin Xu, Peiyi Wang, Xiachong Feng, Lingpeng Kong, Qi Liu

Multimodal ArXiv: A Dataset for Improving Scientific Comprehension of Large Vision-Language Models.

.ACL 2024   

Aisha Eldeeb

[slides

 

Oct 16

CHART

UNDERSTANDING

(a) Kung-Hsiang Huang, Mingyang Zhou, Hou Pong Chan, Yi R. Fung, Zhenhailong Wang, Lingyu Zhang, Shih-Fu Chang, Heng Ji. 

Do LVLMs Understand Charts? Analyzing and Correcting Factual Errors in Chart Captioning.

  

Armin Talaie 

[ slides pdf

slides ppt]]

 

(b) Fuxiao Liu, Xiaoyang Wang, Wenlin Yao, Jianshu Chen, Kaiqiang Song, Sangwoo Cho, Yaser Yacoob, Dong

MMC: Advancing Multimodal Chart Understanding with Large-scale Instruction Tuning.

 Yu.   

 Sangyun Kwon (2)  

(c)  Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi Wu, Haotian Liu, Sadhika Malladi, Alexis Chevalier, Sanjeev Arora, Danqi Chen.

CharXiv: Charting Gaps in Realistic Chart Understanding in Multimodal LLMs.

   

Yuwei Yin (2

[slides])

 
Oct 23

CHART

UNDERSTANDING

&

HUMAN LLM COLLABORATION

(a) Nikhil Singh, Andrew Head, Lucy Lu Wang, Jonathan Bragg.

 FigurA11y: AI Assistance for Writing Scientific Alt Text.

  •   

  • IUI 2024 

Xiang Zhang (2)

[slides]

 

(b) Ahmed Masry, Megh Thakkar, Aayush Bajaj, Aaryaman Kartha, Enamul Hoque, Shafiq Joty. 

ChartGemma: Visual Instruction-tuning for Chart Reasoning in the Wild.

  

Peyton Rapo (2) 

[slides]

 

(c)  Mohammed Saidul Islam, Raian Rahman, Ahmed Masry, Md Tahmid Rahman Laskar, Mir Tafseer Nayeem, Enamul Hoque.

Are Large Vision Language Models up to the Challenge of Chart Comprehension and Reasoning? An Extensive Investigation into the Capabilities and Limitations of LVLMs.

  

Amirhossein Abaskohi (2)

[slides]

 

Oct 30


TEXT ANALYTICS

TEXT=>INFOVIS

&

LLMs in VISUAL ANALYTICS

(a)  Bridging text visualization and mining: A task-driven survey

Shixia Liu, Xiting Wang, Christopher Collins, Wenwen Dou, Fangxin Ouyang, Mennatallah El-Assady, Liu Jiang, Daniel A Keim
IEEE transactions on visualization and computer graphics, 2019

 Ritik Vatsal (2)

[slides]

An "historical" perspective on techniques and tasks for visual text analytics 

 

(b) (text analytics) VADIS: A Visual Analytics Pipeline for Dynamic Document Representation and Information Seeking
Rui Qiu, Yamei Tu, Po-Yin Yen, Han-Wei Shen -- one of the Best Full Papers - INFOVIS 2024

Amirhossein Dabiriaghdam (2)

[slides]
 

(c) LEVA: Using Large Language Models to Enhance Visual AnalyticsDownload 
Yuheng Zhao, Yixing Zhang, Yu Zhang, Xinyi Zhao, Junjie Wang, Zekai Shao, Cagatay Turkay, Siming Chen

INFOVIS 2024

Brian Diep (2) 

[slides not submitted?]

 
Nov  6

Groups, project proposal descriptions + slides + write-up

PROJECT PROPOSAL PRESENTATIONS 

(what to do)

   
Nov  13 

mid-term break: no class 

   

Nov  20 


LLMs in VISUAL ANALYTICS

(a)  PhenoFlow: A Human-LLM Driven Visual Analytics System for
Exploring Large and Complex Stroke Datasets
Jaeyoung Kim , Sihyeon Lee , Hyeon Jeon , Keon-Joo Lee, Hee-Joon Bae, Bohyoung Kim , and Jinwook Seo

 INFOVIS 2024

Aisha Eldeeb (2)   

(b) 

InsightLens: Discovering and Exploring Insights from Conversational Contexts in Large-Language-Model-Powered Data Analysis

Luoxuan Weng, Xingbo Wang, Junyu Lu, Yingchaojie Feng, Yihan Liu, Wei Chen

Arxiv Preprint, 2024

PDF | Video

Armin Talaie (2)   

(c) 

   
Nov  27 
PROJECT UPDATES 
Dec 4

Project feedback on demand

(my office CICSR #105 OR on Zoom)

   

Dec 11

9-noon

(Room ICCS 104)

FINAL PROJECT PRESENTATION AND HAND-IN /REPORT